Speaker: Ana Belén Fernández Cordero.

Abstract: Air traffic control (ATC) relies on communication via speech between pilot and air-traffic controller (ATCO). The call-sign, as unique identifier for each flight, is used to address a specific pilot by the ATCO. Extracting the call-sign from the communication is a challenge because of the noisy ATC voice channel and the additional noise introduced by the receiver. A low signal-to-noise ratio (SNR) in the speech leads to high word error rate (WER) transcripts. The authors propose a new call sign recognition and understanding (CRU) system that addresses this issue. The recognizer is trained to identify call-signs in noisy ATC transcripts and convert them into the standard International Civil Aviation Organization (ICAO) format. By incorporating surveillance information, we can multiply the call-sign accuracy (CSA) up to a factor of four. The introduced data augmentation adds additional performance on high WER transcripts and allows the adaptation of the model to unseen airspaces. Based on https://arxiv.org/abs/2204.06309?context=cs.