Guest editorial

Expressing evaluative opinions: A position statement

The judgment of the Court of Appeal in R v T [1] raises several issues relating to the evaluation of scientific evidence that, we believe, require a response.

We, the undersigned, oppose any response to the judgment that would result in a movement away from the use of logical methods for evidence evaluation. A paper in this issue of the Journal [2] reiterates logical principles of evidence interpretation that are accepted by a broad range of those who have an interest in forensic reasoning. The divergence between those principles of interpretation and the apparent implications of the R v T ruling are epitomised by the following issues that represent our collective position with regard to the evaluation of evidence within the context of a criminal trial:

1. The interpretation of scientific evidence involves reasoning in the face of uncertainty. Probability theory provides the only coherent logical foundation for such reasoning.

2. To form an evaluative opinion from a set of observations, it is necessary for the forensic scientist to consider those observations in the light of propositions that represent the positions of the different participants in the legal process. In a criminal trial, the propositions will represent the positions of prosecution and defence, respectively.

3. It is necessary for the scientist to consider the probability of the observations given each of the stated propositions. Not only is it not appropriate for the scientist to consider the probability of the proposition given the observations, there is a danger that in doing so the jury will be misled.

4. The ratio of the probability of the observations given the prosecution proposition to the probability of the observations given the defence proposition, which is known as the likelihood ratio, provides the most appropriate foundation for assessing the court in establishing the weight that should be assigned to those observations.

5. A verbal scale based on the notion of the likelihood ratio is the most appropriate basis for communication of an evaluative expert opinion to the court. It can be employed in written support for one of a pair of clearly stated propositions.

6. Non-technical phrases such as "would have come about" or "is inconsistent with" ineffective for communicating the scientist's opinion with regard to the weight that should be assigned to observations, but there is also a danger that they may be misleading.

7. Probabilities should be informed by data, knowledge and experience. All data collections are imperfect and incomplete and it necessarily follows that different experts might legitimately assign different probabilities to the same set of observations.

8. The logical approach to evaluating evidence implicit in the foregoing points has come to be known as the "Bayesian approach". The ideas behind this approach are not new; indeed, they were first applied to resolving a serious miscarriage of justice in the Dreyfus case in 1908.

9. It is regrettable that the judgment confuses the Bayesian approach with the use of Bayes' Theorem. The Bayesian approach does not necessarily involve the use of Bayes' Theorem.

10. While we are fully in agreement with the principle of disclosure, candour and full disclosure in court can undermine comprehensibility when scientific evaluations involve technicalities. Pre-trial hearings should be used to explore the basis of expert opinions and to resolve if possible any differences between experts.

References


Signatories

In alphabetical order of surname:

Dr. Colin Aitken, Professor of Forensic Statistics, The University of Edinburgh, United Kingdom.

Dr. Charles L.H. Berger, Principal Scientist, Netherlands Forensic Institute, Netherland.

Dr. John L. Blackstone, Principal Scientist, Institute of Environmental Science and Research, New Zealand.

Dr. Christophe Champod, Professor in Forensic Science, University of Lausanne, Switzerland.

Dr. James Carron, Professor of Statistics, University of Auckland, New Zealand.

Dr. A.P. David, Professor of Statistics, University of Cambridge, United Kingdom.

Dr. Ian W. Deller, Consultant Statistician, Forensic Science Service, United Kingdom.

Dr. Peter Gill, Professor of Forensic Genetics, Institute of Legal Medicine, University of Oslo, Norway.

Dr. Joaquín González-Rodríguez, Assistant Professor, Research Institute for Forensic Science and Security (IC3S), Universidad Autónoma de Madrid, Spain.

Mr. Graham Jackson, Professor in Forensic Science, University of Abertay Dundee, United Kingdom.

Dr. Claude Roux, Professor of Forensic Science and Director, Centre for Forensic Science, University of Technology, Sydney, Australia.

Dr. Martijn J. Sijpkes, Professor in Forensic Statistics, University of Amsterdam, Netherlands.

Dr. Franco Tarvano, Professor in Forensic Science, University of Lausanne, Switzerland.

Dr. Tjark Tijm-A-Tiel, General Director, Netherlands Forensic Institute, Netherlands.

Dr. C. A. Vignaux, Emeritus Professor of Operations Research, Victoria University of Wellington, New Zealand.

Dr. Shaheen W. Willig, Director General, National Forensic Institute of Ireland.

Dr. Gregor R. Zadora, Senior Scientist, Forensic Chemistry, Institute of Forensic Sciences, Poland.

The board of the European Network of Forensic Science Institutes (ENFSI) also supports this position statement and engages itself to work towards a full implementation within the ENFSI laboratories (ENFSI has 58 member institutes in 33 countries).

Dr. Jan De Kinder, Chairman

Paweł Rybiński, Chairman designate

Tore Olsson, Member

Bharat K. Changoa, Member

Dr. Torsten Alkborn, Member.