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ecuring the exchange
of intellectual property
and providing protection
to multimedia contents in

distribution systems have enabled the
advent of digital rights management
(DRM) systems [5], [14], [21], [47],
[51], [53]. Rights holders should be able to
license, monitor, and track the usage of rights
in a dynamic digital trading environment, espe-
cially in the near future when universal multimedia
access (UMA) becomes a reality, and any multimedia
content will be available anytime, anywhere. In such
DRM systems, encryption algorithms, access control,
key management strategies, identification and tracing
of contents, or copy control will play a prominent role
to supervise and restrict access to multimedia data,
avoiding unauthorized or fraudulent operations.

A key component of any DRM system, also known
as intellectual property management and protection
(IPMP) systems in the MPEG-21 framework, is user

authentication to ensure that
only those with specific rights are

able to access the digital informa-
tion. It is here that biometrics can

play an essential role, reinforcing securi-
ty at all stages where customer authentica-

tion is needed. The ubiquity of users and
devices, where the same user might want to

access to multimedia contents from different
environments (home, car, work, jogging, etc.) and

also from different devices or media (CD, DVD,
home computer, laptop, PDA, 2G/3G mobile phones,
game consoles, etc.) strengthens the need for reliable
and universal authentication of users. 

Classical user authentication systems have been
based in something that you have (like a key, an identi-
fication card, etc.) and/or something that you know
(like a password, or a PIN). With biometrics, a new
user authentication paradigm is added: something that
you are (e.g., fingerprints or face) or something that
you do or produce (e.g., handwritten signature or
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voice). Biometric recognition, as a means of personal
authentication, is an emerging signal processing area
focused on increasing security and convenience of use
in applications where users need to be securely identi-
fied. Biometric characteristics are inherently associated
with a particular individual, making them insusceptible
to being forgotten or lost.

There are many different biometric traits that can be
used, each with various benefits and drawbacks,
depending on the application scenarios and required
accuracy. In this article, we outline the state-of-the-art
of several popular biometric modalities and technolo-
gies and provide specific applications where biometric
recognition may be beneficially incorporated. In addi-
tion, we discuss integration strategies of biometric
authentication technologies into DRM systems so that
the whole process meets the needs and requirements of
consumers, content providers, and payment brokers,
securing delivery channels and contents.

Personal Authentication
Through Biometrics
The process of automatically associating an identity
with an individual by means of some inherent personal
characteristic is called biometric recognition [15], [31],
[39], [52]. Traditionally, person authentication has
been accomplished by associating to the person’s iden-
tity something that he/she possesses (e.g., a key, a
card, etc.) or knows (e.g., a password, a PIN).
Biometric recognition adds a new dimension by associ-
ating a person’s identity with something that he/she is
(or produces). Something that a person is indicates a
physiological characteristic inherently associated with
the person, while something that a person produces
indicates a trained act or skill that the person uncon-
sciously does as a behavioral pattern.

Although there are several technologically mature
physiological modalities, like fingerprint, iris, face,
hand/finger(s) geometry, or palmprint recognition,
other modalities are also described in the literature, such
as retina or ear analysis, body (parts) thermogram
inspection, vein structure (of the wrist), face/hand sweat
pores, or objective odor measures. Regarding behavioral
modalities, voice, handwriting, signature, and key-
stroking are the focus of most major research efforts,
though modalities like gait recognition are also gaining
interest. Despite its tremendous importance in modern
forensic investigation, DNA-based authentication is not
yet considered to be an automated means of authentica-
tion, since it requires manual intervention and is cur-
rently far from producing (near) real-time results.

Beyond sheer accuracy, there are many other factors
to consider when examining a biometric solution for an
application [15], [52], such as vulnerability to fraud,
the degree of distinctiveness or uniqueness of the bio-
metric, the intrinsic short- and long-term variability
associated with the biometric, the intrusiveness of the
system to collect the biometric sample (and the

required user cooperativeness), the ease of user enroll-
ment/recognition, and the long-term support required
(database management, re-enrollment, template updat-
ing). Moreover, biometric authentication cannot be
considered as producing error-free verification deci-
sions under any application condition, making multilay-
ered security a general condition for most applications.
The need for increasing security, convenience, and
accountability through biometrics has concentrated a
great deal of research activities on these practical issues,
which will be presented in this article.

Characterization of Biometric Systems
Biometric recognition is a generic term that encompass-
es the two main modes in which biometric systems oper-
ate: Biometric identification is the task of associating a
test biometric sample with one of N patterns or models
that are available from a set of known or registered indi-
viduals. It is also known as the one-to-many (specifically,
one-to-N ) task, and the output of this operation mode
is normally a sorted list of candidate models, based on
their degree of match with respect to the test sample.
Biometric verification is the task of authenticating that a
test biometric sample matches the pattern or model of a
specific user. It is also known as the one-to-one problem,
and the output is a binary decision (accept or reject),
that is usually based on comparison of the match score
between the test sample and the claimed user’s model or
pattern to a decision threshold.

Most biometric systems in commercial applications
operate under the verification mode, as one-to-one
matching is the main task facing security concerns (is
the user who he/she claims to be?). Identification
mode is mainly used for database searches, such as in
criminal fingerprint matches, or for a small-scale user
group (N on the order of 5–10) searches. All biometric
systems operate in two separate stages: the enrollment
phase and the testing phase. During enrollment, bio-
metric samples from a user are used to produce, gener-
ate, or train a pattern or model from the user. This is a
key process, as the resultant pattern or model repre-
sents the biometric “identity card” of each enrolled
user. Care must be taken to ensure the true identity of
the enrollee is established at this stage (generally using
human inspection of various trusted documents), oth-
erwise the whole system is compromised. In the testing
phase a biometric sample from a person is identified or
verified against the enrolled models.

Biometric verification can be considered as a detec-
tion task, involving a tradeoff between two types of
errors: Type I error, also denoted as false rejection (FR),
false nonmatch or miss (detection), occurring when a
true user (also referred to as the client, target, genuine
or authorized user) is rejected by the system, and Type
II error, known as false acceptance (FA), false match or
false alarm, taking place when an impostor is accepted
as being a true user. These two types of errors can be
traded off against each other by varying the decision
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threshold. A more secure system aims for low FAs at the
expense of higher FRs, while a more convenient system
aims for low FRs at the expense of higher FAs. The
desired operating point is highly dependent on the final
application and so, generally, the complete tradeoff
curve over many operating points is often used to char-
acterize biometric performance. 

Performance capabilities have been traditionally
shown in the form of ROC (receiver- or relative-oper-
ating characteristic) plots, in which the probability of a
false-acceptance is plotted versus the probability of a
false-rejection for varying decision thresholds. An
example of an ROC plot is given in Figure 1(a), where
the desired area is at the lower left of the plot, in which
both types of errors are minimized. Unfortunately, with
ROC plots, curves corresponding to well-performing
systems tend to bunch together near the lower left cor-
ner, impeding a clear visualization of competitive sys-
tems. More recently, a variant of an ROC plot, the
detection error tradeoff (DET) plot [26] has been
used, which plots the same tradeoff using a normal
deviate scale. This has the effect of moving the curves
away from the lower left corner when performance is
high and producing linear curves, making system com-
parisons easier. In Figure 1(b), the DET plot corre-
sponding to the same data in the ROC plot in Figure
1(a) is shown. 

Although the complete DET curve is needed to fully
describe system error tradeoffs, it is desirable to report
performance using a single number. Often the equal-
error-rate (EER), the point on the DET curve where
the FA rate and FR rate are equal, is used as this single
summary number. However, the suitability of any sys-
tem or techniques for an application must be deter-
mined by taking into account the various costs and
impacts of the errors and other factors such as imple-
mentations and lifetime support costs and end-user
acceptance issues.

Overview of Biometric Modalities
This section provides a brief description of state-of-the-
art biometric modalities that are considered as suitable
for incorporation into DRM systems. Suitability refers
to both the applicability for DRM schemes and the
maturity of the technology. Modalities are divided into
physiological traits, including fingerprint, face, hand
geometry, palmprint, and iris biometrics, and behav-
ioral ones, including voice, handwriting, and off- and
online signature. Finally, we will also define multimodal
biometrics as a promising way of enhancing perform-
ance through the combination of multiple modalities.

Physiological Biometrics
Fingerprint Biometrics
Fingerprint matching [15], [16], [23] is one of the
most widespread biometric solutions and is based on
the ridge structure of the epidermis of each fingertip
and its peculiar distribution of minutiae points, which is
preserved almost unalterable all through a person’s life.
Traditional ink-and-roll fingerprint images have been
replaced by electronic scanning through different tech-
nologies (optical, capacitive, ultrasonic, etc.)
Unfortunately, these devices may introduce some
degree of variability on fingerprint patterns, due to sev-
eral effects, like the sensitivity to finger temperature or
sweat, the distortion due to pressing on the planar sur-
face, fingertip placement, or the size-limited nature of
the device that adds position variability to the finger-
print. Moreover, there are some population groups
with special problems, like some manual workers that
make intensive use of manual tools that can lead to fin-
gerprint damaging by friction and erosion, an issue that
can affect up to 5% of the population [30].

Features used to represent fingerprints for person
authentication purposes are predominantly minutiae
based [15], [16], [23]. These are typically end points
or bifurcation ridges. The relative position of these

minutiae points constitute a person-
al trait. A common way of extracting
minutiae by image processing is by
use of a lack of linear symmetry,
introduced independently in [4] for
(N-D) and in [17] (for 2-D). First,
smoothed outer products of gradi-
ents are computed yielding 2×2
symmetric matrices (tensors). In the
case of ill-defined orientations, typi-
cally caused by bifurcations, or end
of lines, the smallest eigenvalue of
the matrix tends to be large; other-
wise, it is close to zero. A threshold-
ing of the smallest eigenvalue
usually gives satisfactory results to
extract the minutiae.

For poor-quality fingerprints,
however, it has been shown that the
image enhancement by imposing the
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� 1. Example of verification performance comparison for same hypothetical systems, A
and B, for both (a) ROC and (b) DET plots.
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linear symmetry orientations back to local neighbor-
hoods improves the fingerprint-based authentication sig-
nificantly [40]. Recently [1] and [28] introduced
landmark (arch, deltas) based alignment and identifica-
tion results that completely bypass minutiae extraction.
This is interesting for consumer electronic fingerprint
sensors that tend to be small and hence the number of
minutiae is necessarily less than ink-rolled-based imaging
techniques.

Results of the 2000 and 2002 Fingerprint Verifi-
cation Competitions (FVC2000 and FVC2002, repec-
tively) [23] reveal that even with medium- to high-
quality images, only a few technologies show good per-
formance. This means there is still room for algorith-
mic improvement in terms of image processing to
extract the salient features and match them despite
intra-class variability. An improvement is also needed
regarding acquisition devices, which provide size-
reduced, rather poor-quality images.

Face Biometrics
The face of a person is considered to be the most
immediate and transparent biometric modality for
physical authentication applications. As far as adequate
camera positioning can mitigate issues with users prop-
erly looking into the camera, cooperativeness is not in
some cases a crucial issue. Nevertheless, in other
uncontrolled situations, like when trying to detect a
particular face in a crowd, cooperativeness is an impor-
tant issue. This makes face recognition a highly desir-
able biometric modality, and extraordinary research
efforts have been undertaken in the last decade.

A wide choice of techniques has been proposed to
meet the demands of automatic person authentication
by their faces. Despite its intrinsic complexity, face-
based authentication still remains of particular interest
because it is perceived psychologically and/or physical-
ly as noninvasive. Significant motivations for its use
include the following:
� Face is a modality that humans largely depend on to
authenticate other humans; consequently, every human
is a putative expert in face recognition from infancy.
� Face is a modality that requires no or only weak
cooperation to be useful.
� Face authentication can be advantageously included
in multimodal systems, not only for authentication pur-
poses but also to confirm the liveness of the signal
source of fingerprints, voice, etc.

Unfortunately, face is a three-dimensional (3-D)
modality that is usually captured through a 2-D device
(photo or video camera), causing problems related to
the subject’s pose. Background and illumination are
also problems not yet fully solved, and inherent vari-
ability, like aging, must also be considered. Of course,
factors producing external variability in the face, like
make-up, hairdressing (also beards or mustaches), and
artifacts (glasses, jewelery, piercing, etc.), will cause
degradation in performance.

Features used for description of faces are either geo-
metric metrics of the face, like distances between the
nose and mouth [8], or more abstract features, like filter
responses on a grid [19]. To extract geometric metrics,
subparts of the face must be extracted. A common
approach to do this is by using scalar products (correlate
image templates) that attempt to match well-defined
portions of the face (eye, mouth, etc.) with a reference
template [8]. Therefore, geometric metrics are also
known as being scalar product approaches. The eigen-
face approach [44] describes a face image in terms of
linear combinations of basis images that also belongs to
this class. The eigenface matching can be performed as a
scalar product between the reference face image coeffi-
cients and the test image coefficients. But since the
scalar products are conserved in orthogonal transforma-
tions, this result can also be obtained from a scalar
product (i.e. pixelwise multiplication and summation)
of the approximately reconstructed reference face image
and the approximately reconstructed test face image.
The number of basis images used is set empirically.
Although early studies [44] indicated a face-space of
dimensionality of approximately 20, later studies indi-
cate a dimensionality of the order of hundreds [42] for
relatively large face corpora. Finally, other face detection
approaches related to the eigenface approach is the dis-
tance-from-feature-space [33] and Fischerfaces [2].

Methods that constrain local, highly nonlinear fea-
tures by adding geometrical constraints can be consid-
ered as a mixture of both geometric and scalar product
approaches. These include the dynamic link architecture
(DLA) [19] and related graph-based feature matching
approaches [24], as well as methods based on neural
networks, and feature-based approaches where features
are geometrical measures [8]. In DLA, the mechanism
for assessing connections between the image and model
domain turns out to be complex and time consuming.
A simplified implementation called elastic graph match-
ing (EGM) is often preferred for finding objects in the
scene with a known reference [49]. However, as the
attributed graph is a 2-D representation of 3-D objects,
this tolerance is limited. Extensions have been pro-
posed for rotations in facial depth [50]. In Duc et al.
[11], local discriminant measures for face images are
proposed. This leads to significantly improved perform-
ance for face authentication applications. In that contri-
bution, subsets of the data are considered separately,

Biometric recognition adds a
new dimension by associating
a person’s identity with
something that he/she is
(or produces).



leading to a faster training, as the solution to the opti-
mization problem is known analytically.

The main regions of interest for the face recogni-
tion/authentication task are well known: the eyes and
the mouth of a subject. A biologically inspired method
to locate such facial landmarks using a Saccadic search
strategy built around a rigid log-polar retina, which is
used to sample the Gabor decomposition of the image
[41], as shown in Figure 2, has recently been proposed.
The Saccades make use of a priori knowledge of the
face components in the form of appearance-based mod-
els of the eyes and the mouth. The models describe the
Gabor signature of the target features. Face authentica-
tion is achieved using experts of each facial region, i.e.,
the two eyes and the mouth. The results report signifi-
cant improvement on the Gabor features extracted on
grids spanning the full face that have been employed
previously [11], [19].

Iris Biometrics
Iris verification is based on the stability of the so-called
trabecular pattern during a person’s lifespan. This tra-
becular pattern is formed by an elastic connective tissue
called trabecular meshwork, which gives to the iris its
appearance of radial divisions. It consists of pectinate
ligaments adhering into a tangled mesh revealing stria-
tions, ciliary processes, crypts, rings, furrows, freckles,
vasculature, and a corona. The iris is protected by the
cornea and the aqueous humor, so the iris pattern is
almost unaffected by environment, except for pupillary
reflex to light. This stretching of the iris tissue as the
pupil dilates produces elastic deformations. Locating
the inner and outer iris boundaries can lead to a linear
compensation for this effect.

The segmentation of the inner and outer boundaries,
together with the detection of the eyelids (if they
intrude into the iris pattern), require the application of
image processing techniques [10], [48]. A first approach
to the problem solution [10] is accomplished by extract-
ing concentric coronas from the iris. On each of these
coronas, a 2-D Gabor wavelet transform is applied to
represent image texture by the arguments of the com-
plex filter responses. Each of these phasor angles is quan-

tized into just the quadrant in which it lies. This opera-
tion is repeated for all filters and regularly selected spatial
sites on concentric circles of the iris. In case some sites
fall in nonvisible places due to an eye-lid covering the
Gabor filter measurement site, the site is marked as non-
valid by a sites of interest mask. This site mask together
with the Gabor-filter-based local phase measurements
just described constitute the iris code.

Left and right iris patterns of a given person are dif-
ferent. Also, iris patterns between identical twins are
different. However, a nontrivial issue is securing the
liveness of the signals and obtaining the high-quality
images that are required to represent the iris patterns
that make them so personal. Unlike face scan technolo-
gy, which can leverage existing photo- or video-camera
technology, iris scan deployments require specialized
devices including, in some cases, infrared illumination
and may be perceived as invasive by users who are
required to be very collaborative. The iris code, and for
that matter iris features reported by other researchers,
relies on the exceptionally high-quality images that a
combination of the iris image acquisition software and
user collaboration allows.

Hand Biometrics
Palmprint Recognition
Palmprints are stable and show high accuracy in repre-
senting each individual’s identity [52]. Thus, they have
been commonly used in law enforcement and forensic
environments. Since the surface of the palmprint is
larger than the fingerprint itself, a higher quantity of
identifying features can be extracted from the palm-
print. Moreover, users consider hand biometrics as
being user friendly, easy to use, and convenient.
Palmprint acquisition is based on standard charge-cou-
pled device (CCD)-based optical scanning. Although
some acquisition procedures imply pressing on a glass
panel (inducing an elastic distortion on the palmprint),
some others do not. Those who do not however, must
solve the liveness issue separately.

Palmprint features can be divided into three differ-
ent categories: a) point features, which include minuti-
ae features from ridges existing in the palm, and delta

point features, from delta regions found in
the finger-root region; b) line features,
which include the three relevant palmprint
principal lines, due to flexing the hand and
wrist in the palm, and other wrinkle lines
and curves (thin and irregular); and, c) tex-
ture features of the skin.

Hand Geometry
Hand geometry recognition [15] is based on
the extraction of a hand pattern that incor-
porates parameters like finger length, width,
thickness, curvatures, or relative location. To
obtain these features, an image of the silhou-
etted hand is needed. The process of captur-
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� 2. A biologically inspired method to locate facial landmarks using a Saccadic
search strategy built around a rigid log-polar retina (a), which is used to sample
the Gabor decomposition of the image (b). 
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ing this information is normally accomplished through
CCD cameras and infrared illumination; the user puts
his/her hand on a highly reflective surface, such as a
platen, performing an orthographic scanning, consist-
ing of top and side views of the hand shape. Surface
details like texture and fingerprints are ignored for this
purpose. Specific hand positioning is forced by using
inter-finger pegs or locator pins.

Hand geometry requires high collaboration from
the users as the hand must be kept flat while scanning.
Fingernails (e.g., on females) that can potentially dete-
riorate intra-class variability must also be coped with by
the system.

Behavioral Biometrics
Voice Biometrics
The speech signal conveys many levels of information
to the listener. At the primary level, speech conveys a
message via words, but at other levels speech conveys
information about the language being spoken and the
emotion, gender, and, generally, the identity of the
speaker. While speech recognition aims at recognizing
the words spoken in speech, the goal of automatic
speaker recognition systems is to extract, characterize,
and recognize the information in the speech signal con-
veying speaker identity. In this section we provide a
brief overview of the area of speaker recognition,
describing underlying techniques and some indications
of performance. This is not a comprehensive review,
and readers should see, for example, [9], [35], and
their references for more details.

Depending on the level of user cooperation and
control in an application, the speech used for these
tasks can be either text dependent or text independent.
In a text-dependent application, the recognition system
has prior knowledge of the text to be spoken and it is
expected that the user will cooperatively speak this text.
In a text-independent application, there is no prior
knowledge by the system of the text to be spoken, such
as when using extemporaneous speech. Text-independ-
ent recognition is more difficult but also more flexible,
for example, allowing verification of a speaker while
he/she is conducting other speech interactions (back-
ground verification).

Research and development on speaker recognition
methods and techniques continues to be an active area
for well over four decades. Approaches have spanned
from human aural and spectrogram comparisons, to
simple template matching, to dynamic time-warping
(DTW) approaches, to more modern statistical pattern
recognition approaches, such as neural networks and
hidden Markov models (HMMs). Over this same time,
research and development corpora have evolved from
small, private corpora (five to ten speakers) under labo-
ratory clean, controlled conditions (single session, read
speech) to large, publicly available corpora (500+
speakers) reflecting more realistic and challenging con-
ditions (extemporaneous speech from landline and cel-

lular telephone channels). Benchmark evaluations using
common corpora and paradigms have been conducted
for several years (e.g., YOHO, CAVE project, NIST
[29]) allowing comparison of technical approaches and
focusing effort on common challenges. 

Although there are no exclusive speaker identity
cues in the speech signal, information about the speak-
er’s anatomical structure is generally conveyed in the
amplitude spectrum, with the location and size of spec-
tral peaks (formants) related to the vocal tract shape
and the fine structure (pitch striations) related to the
glottal source. Typically, the amplitude spectrum is esti-
mated using 20 ms of speech and a physiologically
motivated mel-scale filter-bank every 10 ms so as to
capture the evolving nature of the vocal apparatus. The
amplitude spectrum is then further processed through a
form of cepstral analysis and appended with time deriv-
atives to produce the feature vector that is used to cre-
ate a speaker model. Recent research, which is beyond
the scope of this article, is focused on using other
aspects of speech, such as pronunciations, prosody, and
word usage, to help better characterize and recognize
speakers [36].

In most speaker recognition systems, the speaker
models are generally some form of HMMs. From pub-
lished results, the use of HMMs has been described as
generally producing the best performance compared to
other models. HMMs encode the temporal evolution
of the features and efficiently model statistical variation
of the features, providing a statistical representation of
how a speaker produces sounds. For text-dependent
applications, whole phrases or phonemes may be mod-
eled using multistate left-to-right HMMs. For text-
independent applications, single-state HMMs, also
known as Gaussian mixture models (GMMs), are used. 

For speaker verification systems, the decision is usu-
ally made by a likelihood ratio test computed between
the claimed speaker’s model and a model representing
impostor or generic speech. This alternative model is
often called an impostor, background, or cohort
model. The use of an impostor model is widespread
and can be crucial to obtaining good performance.
Basically it acts as a normalization to help minimize
nonspeaker related variability (e.g., text, microphone,
noise) in the likelihood ratio score [35].

Speech is a natural signal to produce that is not con-
sidered threatening or intrusive by users to provide. In
many applications, such as telephone applications,
speech may be the main, or even the only, modality.
The telephone system provides a ubiquitous, familiar
network of sensors for obtaining and delivering the
speech signal. Moreover, there is no need for special
transducers to be installed at application access points.
Even for nontelephone applications, like PC-based
ones, sound cards and microphones are low cost and
readily available. Combined with utterance verification,
speaker verification is one of the few biometrics that
supports a natural “challenge-response” to help thwart
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spoofing attacks. A system can present a user with a
series of randomized phrases to repeat so the system can
verify not only the voice matches but also the required
phrases match. Additionally, it is possible to use forms
of automatic knowledge verification where a person is
verified by comparing the content of his/her spoken
utterance against the stored information in his/her per-
sonal profile (e.g., “What is your pet’s name?”).

On the other hand, speech is a behavioral signal that
may not be consistently reproduced by a speaker and
can be affected by a speaker’s health (cold or laryngi-
tis). Also, the varied microphones and channels that
people use can cause difficulties since most speaker ver-
ification systems rely on low-level spectrum features
susceptible to transducer/channel effects. Further-
more, the mobility of telephones means that people are
using verification systems from more uncontrolled and
harsh acoustic environments (cars, crowded airports),
which can stress accuracy.

Handwritten Biometrics
The convenience for paper and pen in the electronic
era is the reason why people still use handwriting as a
mean to convey, retain, and facilitate communication.
Together with this kind of information, handwriting is
also a skill that individualizes people [34]. From this
point of view, the process of automatically determining
who the specific author of a given handwritten text is is
called writer recognition. Handwritten recognition can
be accomplished from two different points of view,
depending on whether there is electronic access to the
handwriting process or not. If there is, one can digitize
the pen’s instantaneous information trajectories, and
information like pressure, speed, or pen-up movements
can be captured; if not, just shape-based image recogni-
tion is feasible. The former is also known as online or
dynamic handwriting recognition, whereas the latter is
often called offline or static recognition.

A particularly relevant component in handwriting
biometrics is signature recognition, because of the social
and legal acceptance and widespread use of the written
signature as a personal authentication method.
Regardless of the handwritten content, signature verifi-
cation is entirely focused on extracting writer-specific
information. It has also to be taken into account that
FA refers in this modality mainly to the impostor’s abili-
ty to mimic the target signature by producing a forgery.
Moreover, devices like PDAs, pocket PCs, tablet PCs,
or 3G mobile phones might offer handwriting capabili-
ties, due to the fact that handwriting is considered as
being more natural for humans and also to the possibili-
ty of size reduction by eliminating the keyboard.

Online Signature Verification: In online signature
verification systems [20], [32], different approaches
can be considered to extract signature information;
they can be divided into: i) function-based approaches,
in which signal processing methodology is applied to
the dynamically acquired time sequences (i.e., velocity,

acceleration, force, or pressure), and ii) feature-based
approaches, in which statistical parameters are derived
from the acquired information. One can also specify
different levels of classification, so it is possible to use
and combine shape-based global static (i.e., aspect
ratio, center of mass, or horizontal span ratio), global
dynamic (i.e., total signature time, time down ratio, or
average speed) or local (stroke direction, curvature or
slope tangent) parameters. 

The use of complete sequences have so far yielded
better results, since reducing time sequences just to sta-
tistical features diminishes our ability to make a precise
characterization of this dynamic process. This time-
based sequence characterization process is strongly
related to the way in which a reference model is estab-
lished. HMMs have shown this capability regarding
other behavioral-based biometric traits, outperforming
other classical approaches like distance measure,
(weighted) cross correlation, or dynamic time warping
(dynamic string matching). Online signature verification
offers reliable identity protection, as dynamic informa-
tion is not available on the signature image itself but in
the process of signing. Also, pen-up dynamic informa-
tion can be acquired, and these pen-up trajectories do
not leave even their shapes in the final image.

Offline Signature Verification: Offline signature veri-
fication relies on extracting writer-specific information
just from the shape of the image and the luminance of
the trace [20], [34]. Once the signature has been
extracted from the document background, several tech-
niques have been used for offline signature verification
including minimal distance classifier, nearest neighbor,
dynamic programming, neural networks, and HMMs.

Unlike online signature verification, off-line signa-
ture verification cannot take full advantage of the
dynamic handwriting process. Performance results of
offline systems are expectedly lower than that based on
online information, although false accepts rely entirely
on the ability of the forger to produce a highly skilled,
shape-based forgery. The extraction from offline signa-
tures of pseudodynamic information, like recovery of
the stroke sequence, or deriving the instantaneous pres-
sure from the stroke width, is now the focus of some
additional research efforts.

Multimodal Biometrics
The performance of any single-trait verification system
can be improved by unimodal (or monomodal) fusion,
i.e., the combination of several verification strategies
applied on the same input data. Even greater verifica-
tion performance improvement can be expected
through the use of multiple biometric characteristics,
due to their statistical independence [3], [37]. Inspired
by this potential, great effort has been made to demon-
strate the benefits of the multimodal fusion approach
[3], [8], [18], [37].

Biometric multimodality can be studied under the
general field of data fusion or under the particular
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frame of classifier combination. Bigun et al. in [3] com-
bined machine expert opinions (applied to the frontal
face and speech) in a probabilistic Bayesian framework,
whereas Kittler et al. in [18] showed that weighted
summation of machine expert opinions outperforms
other strategies, including product rule, by using
Bayesian arguments. Interestingly, both approaches
independently show results in favor of weighted
machine expert summation rules, via Bayesian method-
ologies, by using both real data (speech, frontal, and
profile images modalities) and simulated data. The
approach of [3] is based on Bayesian results obtained
from catastrophe studies where human expert opinions
must be combined to do assessment on probability of
(undesired) events. In an analogous manner, (machine)
experts’ future opinions where no true data are avail-
able (operational state of an authentication system
when the true identity is not available) are predicted by
using the Bayes’ theorem from the past performance of
each expert by weight optimization. In this approach
expert opinions are automatically calibrated by their
“historical bias” they have shown in the past. In the
approach of [18], R modalities, two classes (ω1 for
clients and ω2 for impostors), and a given pattern Z
that generates the feature vector xi for modality i, the
classifiers (or experts) are considered to give the a pos-
teriori probability for each class k: P (ωk | xi ). Several
ways to implement the fusion of the modalities are then
obtained (sum, product, max, min, etc.), based on the
Bayes’ theorem. The sum rule outperformed the
remainder in the experimental comparison, due to its
robustness to errors in the estimation of P (ωk | xi )

made by the individual classifiers.
Multimodal fusion can also be treated as a pattern

classification problem. Under this point of view, the
scores given by individual expert
modalities are considered as input
patterns to be labeled as
accepted/rejected (for the verifica-
tion task). Verlinde et al. followed
this approach and compared in [45]
the following pattern classification
techniques for multimodal fusion
(sorted by relative decreasing per-
formance): logistic regression, maxi-
mum a posteriori, k-nearest
neighbors classifiers, multilayer per-
ceptrons, binary decision trees, max-
imum likelihood, quadratic
classifiers, and linear classifiers. More
recently [13], support vector
machines (SVMs) have been com-
pared with all the above-mentioned
techniques carrying out the same
experiments, showing very promis-
ing results. From now on, this per-
spective will be referred to as
learning-based (or trained) fusion,

because it requires sample outputs from the experts to
train the pattern classifiers.

Performance Characterization
in Biometrics
Although there have been some attempts to directly
compare performance of different biometric modalities
(for example, see Figure 3, used with permission from
[25]), it is still difficult to characterize the performance
of different biometric recognition systems in a consistent
way. One reason for this is that there are many factors
that produce degradation in recognition performance,
and these factors are not homogeneous throughout bio-
metric modalities. Factors like the type of application,
enrollment and/or testing scenario, size of the popula-
tion under study, controlled situations versus uncon-
trolled situations, etc., introduce a heterogeneous
assessment framework. There are also intra-modality fac-
tors (e.g., type of acquisition device, fingertip position,
or finger humidity in fingerprint matching; illumination,
pose, face artifacts, or background in face recognition;
transmission channel, noise, or type of handset in speak-
er verification; online versus offline acquisition, or
degree of skill of forgeries in signature biometrics, etc.)
that are almost impossible to equalize between modali-
ties to make absolute comparisons.

One observed theme in these cases is that perform-
ance tends to improve with increasing constraints on
the application (more biometric samples, less distor-
tion/noise/artifacts, well-performing acquisition
devices, cooperative users, etc.). Determining acceptable
performance for a particular application will depend
on the benefit of replacing any current verification
procedure, the threat model (claimant to impostor
attempts), and the relative costs of errors.
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� 3. From [39], DET plot showing biometric performance for six different modalities,
namely, face, fingerprint, hand geometry, iris, veins, and voice. Regarding fingerprints,
results include performance with three different sensors, two of them being capacitive
chips and the third being optical.
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Integrating Biometrics in DRM Systems 

Security Analysis of Nonbiometric
DRM Approaches
A content provider has mainly two ways to assure that
content is delivered only to appropriate authorized
clients [47]. The first way is to set up a secure connec-
tion with the client and to authenticate him as a trusted
client before delivering any content. This type of con-
tent delivery is most suited to the scenario of a con-
sumer obtaining content in a session, which is an
important but very limited part of the DRM world and
has the problems associated with key management
(e.g., storing, password-based access to the encryption
keys). The second way to deliver content only to
authorized clients is to deliver contents in an encrypted
form that can only be decrypted by a trusted client.
This approach is particularly suited to store-and-for-
ward content delivery systems, allowing for super-dis-
tribution (any user can redistribute with no rights
violation) while the consumer remains anonymous to
the content provider. A further advantage is that it sep-
arates the content payment and authorization from the
content delivery, simplifying the content distribution.
However, there are issues with ensuring that only
authorized clients obtain and use the decryption keys.

Most current DRM systems are realized in software,
so there is nearly no protection against serious attacks.
Technical components of DRM systems consist of special
adapted and well-known IT security functions. As shown
in [12], pirates can reverse-engineer DRM systems, mak-
ing them independent of hardware/software specific
devices/tools (e.g., useable on other platforms) and pro-
liferating this knowledge via freely available tools.

Existing DRM systems base their security structure
on different combinations of the following technologies.
� Watermarking: This technique enables the inclusion
of imperceptible information within audio/video/doc-
ument digital content. It is primarily used for copy con-
trol and illegal distribution detection, usually including
right-holder information. A secret key must be used to
reveal the watermark allowing later extraction by the
content provider.
� Fingerprinting: The digital content is watermarked
with the consumer’s identity for every client. Usually
used in multicast encrypted streaming of content, users
have individual decryption keys containing fingerprints
(personal data). It enables fair use copies (e.g., copies
between members of a family) providing control of the
origin in case of illegal copies.
� Tamper-resistant software/hardware: This is responsi-
ble for securely handling the decryption and rendering
of the content for the end consumer. It must prevent
the consumer from gaining access either to the decryp-
tion key or to the decrypted digital content.
� Encryption: This is the process of data locking based
on encryption/decryption keys. Both symmetric and
public key infrastructure (PKI) approaches have been

shown extraordinary useful in a wide range of applica-
tions from secure communications to e-commerce.

Many successful DRM and non-DRM systems rely
on these technologies, but they are still susceptible to
serious attacks to crack or circumvent them. The main
vulnerability is in key management. First, there are
many keys (for encryption, decryption, watermarking,
and fingerprinting) needed by many people (individual
consumers, system administrators, dealers and distribu-
tors, payment brokers, etc.) increasing the potential for
compromise. Second, since cryptographically strong
keys are not amenable for people to remember and
enter, at one point, key entry is reduced to some easily
remembered passcode. Thus, the security of the
encryption system, and so that of the DRM, is only as
good as the passcode, with all its well-known problems
(the FBI ranks problems with “accounts with no pass-
words or weak passwords” as second in its “Top 20
Security Holes”).

One of the main problems with passcodes is the lack
of direct connection between users and passcodes, so a
legitimate user and an impostor who fraudulently
acquires the user passcode are indistinguishable to the
system. Biometric authentication provides this linkage
between users and passcodes for key security using a
biometric technology to secure the cryptographic key.
Apart from the different biometric technologies that
can be adopted, each one of them can be applied in dif-
ferent ways, as discussed below, adding another security
layer to the system giving access to the encryption keys,
or directly generating keys from biometric data.

Overview of DRM Systems
Integrating Biometrics
In the first part of this article, different biometric
modalities and technologies, most of them commercial-
ly available, together with their respective levels of per-
formance for different application scenarios, were
presented. However, it is not easy to select a single bio-
metric trait for a target application. For instance, end
users might not accept invasive authentication tech-
niques, or system vendors might not desire expensive
acquisition sensors. Moreover, a specific biometric trait
cannot be considered as a standalone technology but as
a component in the overall global solution, adapted to
the target application by the biometric technology
provider, and easy to integrate into the DRM system. 

The selection of the adequate biometric modality is
just the first task to integrate biometrics in this new
framework. DRM systems are extremely complex, with
both local and distributed resources and processes and
different types of clients and providers. For instance, a
content distributor (such as a TV station, an Internet
pay-per-download music site, or a wireless 3G enter-
tainment provider) acts simultaneously as a client from
content creators (e.g., a Hollywood film studio or a
game software company) and as a provider for end cus-
tomers or additional distribution layers. Consequently,
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there are two main kinds of consumers of intellectual
rights, namely people (as individuals, groups, or com-
panies) acting as end users, and distribution clients act-
ing as intermediaries, and both kinds of entities need to
be securely authenticated.

Moreover, some DRM applications concern trans-
actions between companies, which have to be author-
ized and signed off by chief executives (for example, a
new catalog from a content provider that is to be
offered by a content distributor). The use of biomet-
ric tokens as electronic signatures in electronic docu-
ments, as well as the access to reserved executive keys
by means of biometric verification, are both viable
ways to offer instantaneous access to protected con-
tent just offered to your company.

However, the biggest area of interest for biometrics
into DRM systems is that of key management. In com-
plex structures such as DRM systems, many keys, pass-
words, digital certificates, and electronic signatures,
each one of them with different levels of permissions,
have to be managed properly, and here biometrics pro-
vides a natural way to guarantee that only the real indi-
vidual has access or can generate his correspondent
specific key. 

Biometric-Based DRM Approaches 
Both the “secure the pipe” and the “secure the con-
tent” scenarios apply to biometric user authentication
when users are humans. Biometric technologies will
work to provide secure authentication of the user in
every task or target application where a human con-
sumer of multimedia content is involved, either as a
standalone technology or as passport to other well-
established technologies (i.e., by using biometrics to
unlock your Internet digital certificate). 

Several commercial biometric solutions exist that
are applicable to those target scenarios, ranging from
online signature recognizers in tablet PC environ-
ments, to fingerprint readers in USB keys, to integrat-
ed cameras on 3G mobile phones, to multimodal
speaker verification integrated in vocal portals and dia-
logue systems. This is just the beginning, as many
other applications will be available in the near future
when new devices will integrate high processing capa-
bilities with multimodal acquisition devices.
Applications are countless, and system designers must
look for the best biometric solution (in terms of per-
formance, acceptability, and cost-effectiveness) for
each specific target application.

Below we outline several examples of biometric
technologies in DRM systems, but a complete listing of
all existing systems or proposals is out of the scope of
this work. The selection is based both on covering the
wide variety of biometric technologies and easy-to-
access documentation of the reported systems. 

We will differentiate two kinds of biometric system
applications in the two next subsections. The first set of
applications involves the use of conventional biometric

systems as an additional security layer for access to
restricted data. The second set of applications involves
the use of biometrics for encryption key generation,
which gives an extra security layer compared to mere
access control, as the encryption key is never stored and
is dynamically generated from the biometric data both
for encryption and decryption of content.

DRM Systems with Biometric-Added Security
In this case, when a user wishes to access a secured
key, he/she will be prompted to provide a biometric
sample. If the user is accepted after matching of the
input biometric sample with the enrollment data, the
key is released and can be used to encrypt or decrypt
the desired data. Biometric authentication is generally
coupled with password and, occasionally, token
authentication.

Here any existing biometric technique or system can
be adapted to work in the DRM environment as an
additional security layer. The usability of biometrics for
the creation and retrieval of electronic signatures,
strongly linked with DRM and encryption, has been
extensively studied in [38]. In this work most existing
biometric technologies are analyzed in the environment
of smartcard technologies, one of the most prominent
representatives of technologies for secure signature cre-
ation devices (SSCDs), as it is capable to execute signa-
ture algorithms and to provide storage and access to
certificates. The pros and cons of each technology are
thoroughly studied, with conclusions oriented to the
smartcard and electronic signature environment, which
can directly be extended to DRM systems. 

However, even if providing an added security layer
relative to nonbiometric password-based systems, bio-
metric-based systems are still not perfect. First, the bio-
protected key is (securely) stored somewhere in a
password-protected system, so it could probably be
accessed by a software attacker or by physical access to
hardware/disks. Second, a compromised biometric pat-
tern (fingerprint spoofing, voice recording, etc.) is
impossible to replace. 

To mitigate the compromise problem, a form of an
interactive response system is often used. These proce-
dures cannot be applied to static biometrics, such as
fingerprints or iris recognition, but are primarily useful
for dynamic biometrics, such as voice or online writing.
A very interesting solution in the voice domain is
known as conversational biometrics, as shown, for
example, where the speaker is authenticated not just
from the acoustic characteristics of his/her voice, as in
conventional voice biometric systems, but also from
his/her particular way of interaction with a dialogue
manager capable of natural language understanding in
a restricted domain (e.g., access to the catalogue of a
content provider). In this sense, the process of authen-
tication is never the same, and even recordings of the
true speaker from previous access attempts will not give
access to the system in a different trial.
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DRM Systems with Biometric Key Generation
A first approach to integrate biometric patterns and
encryption keys is to hide the cryptographic key in the
enrollment template via a secret bit-replacement algo-
rithm [43]. If the user is authenticated through biomet-
rics, then it looks into the enrollment template in the
specified positions for the bits that constitute the key.
However, an attacker can learn from different user
enrollment templates the positions or algorithm that
gives access to the key bits, thus compromising the keys.

A second approach is discussed in [6], where the key
is directly obtained from the biometric template, from
direct template coding. In this proposal, two main
problems appear. The first one is that as a result of
changes in the biometric template due to environmen-
tal and physiological factors, the biometric template is
generally not consistent enough to be used as a crypto-
graphic key. The second problem is that if the key is
ever compromised, then the use of that particular bio-
metric is irrevocably lost. Note that this is the same
consequence as above but from different origin.

A similar approach in [46] uses statistical features of
online signatures instead of biometric images. This
method allows obtaining a biometric hash vector based
on an individual interval matrix, where cryptographic
keys can be directly obtained from that hash vector.
The idea relies on establishing confidence intervals,
based in the user intra-variability, in 24 different fea-
tures of a signature, and checking with the test signa-
ture if every feature is or is not between the
corresponding limits, accepting (bit = 1) or rejecting
(bit = 0) the feature as original from the author,
obtaining finally the 24-bit hash vector if the signature
comes from the true signer. Another interesting exam-
ple using voice [27] uses text-dependent (fixed) pass-
words to generate the cryptographic key. Thus,
segmental vector quantization is used to define m con-
secutive clusters that are represented by their centroids.
During tests, every aligned segment is distance-based
checked as accepting (1) or rejecting (0) the segment.
An additional error correction procedure is implement-
ed to allow for insertions/deletions up to 3 or 4 bits,
for a total length of m = 46 bits. So, a double objective
is achieved, obtaining unpredictable and reproducible
keys. Unpredictability is achieved from the entropy
from how the user speaks the password; that is, an
impostor knowing the password will not obtain the

(correct) key after uttering it. As happened in [6], users
are generally not consistent in all features, so the chal-
lenge to obtain reproducible keys from biometrics
relies on accommodating variations in those features in
which a user is inconsistent while still generating the
same key each time.

The same idea regarding the generation of the bio-
metric key is presented for fingerprints in [43], allowing
for reproducible keys with different images (rotation,
translation, elastic skin distortions) from the same fin-
gerprint. But the innovation in this approach comes
from the fact that during enrollment the biometric
image is combined with a digital key to create a secure
block of data. This data block is secure in that neither
the fingerprint nor the key can be independently
obtained from it. During verification, the cryptographic
key is retrieved by combining the biometric image with
the secure block of data. Thus, it does not simply pro-
vide an accept/reject authentication decision to release
the key but instead retrieves a key that can only be
recreated by combining the input biometric image with
the secure block of data. In this way, the key is com-
pletely independent of the biometric data, which means
that, first, the use of the biometric is not forfeited if the
key is ever compromised, and, second, the key can be
easily modified or updated at a later date.

Conclusion
We have outlined some sample applications where bio-
metric technologies can successfully be applied to
DRM applications. However, extreme care has to be
taken with respect to the customers’ rights, in particu-
lar when dealing with sensitive personal data and specif-
ically regarding biometric data. Identification patterns
cannot be transmitted, saved, or watermarked into digi-
tal contents without extreme security measures
(secured communication channels, encryption, data
hiding, etc.) and according to applicable personal data
regulatory laws. Consumer-rights organizations are
sensitive to biometric data management, and all pre-
ventive measures should be addressed to hold back seri-
ous planning errors in the first systems to be deployed,
which could provoke greater damages to the DRM
industry in the future.

DRM systems are ready to be extensively used, as
several proprietary solutions already exist, and open
standards are ready, like the MPEG-21 IPMP and the
full standard [7]. In this deployment process, biomet-
rics should play a crucial role to guarantee the neces-
sary mutual trust in the chain from right holders to
content distributors and consumers. We believe that a
proper use of biometric technologies will constitute
one of the key issues for DRM technologies to succeed
in the near future.
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