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The use of uttered Personal Identification Numbers (PIN) is a
well-suited approach for person identification through voice in
real applications. In this paper, speaker verification with short
4-digit strings, in a pragmatic perspective where very few
utterances for training are available, is accomplished. The
problem here arises due to the small quantity of voice
available in short PIN utterances. Furthermore, it has to be
taken into account the specificity of Spanish in this task, as
digit strings are not uttered in a isolated digit-by-digit basis,
but mentally grouped without constraints, and read as whole
figures, with varying groups for different utterances of the
same PIN. This specific factor induces high dependency on the
phonetic contents of the PIN, and complicates considerably the
design of text-dependent systems. Considering this, a text-
independent GMM speaker verification system, including
‘nearest reference speaker’ and ‘universal background model’
score normalization, together with CMN channel
compensation, has been evaluated over a specific PIN
database, where different training conditions (phonetic
dependent/independent) are tested.
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Personal identification through voice for access control and
restricted services management, in both remote and proximity
implementations, has become one of the most important issues
in state-of-the-art speech technology applications [1].
Therefore, the use of PIN utterances perfectly fits for speaker
verification tasks in real developments. In this paper, we are
not concerned about long PIN codes [2], because if they are
really PINs and not passport or  telephone numbers (which are
very easy to know), they are extermely difficult ro remember.
Then, we will use 4-digit strings as PINs, exactly as in credit
cards, in a pragmatic perspective where only very few
utterances for training are available. We believe that short
numeric codes will meet the requirements of many speaker
verification applications.

Talking about short PIN codes means taking into account the
peculiarity of Spanish speakers (and surely others worldwide)
when pronouncing digit strings, in the sense that these are not
uttered in a isolated digit-by-digit basis, but mentally grouped
without constraints, and read as whole figures [3]. For instance,
digit string "1 2 3 4" can be uttered as “one two three four”,
“twelve thirty four”, “one thousand two hundred and thirty
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four”, “twelve three four”, and moreover, different for different
utterances from the same speaker. This specific factor induces
high dependency on the phonetic content of the PIN, and
complicates considerably the design of text-dependent systems.

This specific situation has led us to consider the use of text-
independent recognition to face the problem of PIN-based
speaker verification. In this sense, we have employed a GMM
approach for speaker verification through PIN codes. A task-
specific speech database, named TelPIN, has been recorded in
order to carry out several verification tests, including telephone
handset and channel compensation through a Telefonica real-
time version of cepstral mean normalization (CMN) [4]. In
order to test the system, two universal background models
(UBM) have been obtained from specific spanish databases
[5], and several score normalization methods, as ‘nearest
reference speaker’ and ‘UBM' normalization have also been
tested [6].
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TelPIN database has been specifically recorded for this project,
containing a total of 50 speakers (25 male + 25 female).
Originally, it has been LQ� VLWX recorded through a lapel Sony
microphone. For the telephone speech experiments contained in
this paper, an artificial high-quality Brüel&Kjær artificial-
mouth has been used to reproduce microphone-speech files
through real telephone links. This procedure allows to have
available exactly the same speech but using different handsets
and telephone channels, so channel mismatch can be in each
case better studied. Specifically, two Spain-widespread
standard handsets have been used, namely TEIDE type
(Handset 1), and FORMA type (Handset 2) (these two types
cover about 75% of all handsets deployed in Spain).
Experiments are designed on the basis of realistic training,
where no more than 2 or 3 repetitions can be requested to avoid
the speaker from feeling annoyed.

���� 7HO3,1�&RQWHQWV

TelPIN corpus has been specifically designed to contain the
training and testing speech material for this task. From now on,
we will classify possible pronunciation of an specific PIN as
LVR�SKRQHWLF (same phonetic content) utterance of that PIN, and
any other pronunciation as DOR�SKRQHWLF (different phonetic
content).

7UDLQLQJ�6SHHFK

•  10 phonetically-balanced (specifically designed and
restricted for a PIN application) digit strings of variable



length, common to all speakers. With this material, we can
construct PIN pronunciation-independent speaker models.

•  3 repetitions of specific PIN per speaker, all pronounced in
an iso-phonetic way, for pronunciation-dependent speaker
models with one, two or three PIN repetitions.

7HVWLQJ�VSHHFK

•  5 repetitions of iso-phonetic specific PIN per speaker.

•  2 more repetitions of specific PIN per speaker, but this time
pronounced in an free alo-phonetic way. In this way, we can
test the system with different pronunciations of the correct
PIN.

•  2 other PIN, one repetition each, corresponding to other
speakers personal PIN code. These utterances will be used
to determine how the system operates with deliberate or
intentional speakers.

���� 7HO3,1�WDVNV

7UDLQLQJ�7DVNV

•  Training task 75B675: 1 GMM per speaker is trained with
��� FRPPRQ (for all speakers) SKRQHWLFDOO\�EDODQFHG� GLJLW
VWULQJV. This means phonetic content is the same for all
speakers, and no specific PIN information is used.

•  Training tasks 75B13,1: 1 GMM per speaker is trained
with 1�UHSHWLWLRQV�RI�KLV�KHU�3,1. As 1 ranges from 1 to 3,
three different models per speaker are obtained.

7HVWLQJ�7DVNV

•  TEST_A: False rejection (FR) curves obtained with 5
repetitions of iso-phonetic PIN utterances. False acceptance
(FA) curves obtained with 2 PIN corresponding to
LQWHQWLRQDO impostors (same PIN as target speaker).

•  TEST_B: FR curves obtained with 5 repetitions of iso-
phonetic PIN utterances. FA obtained using all non-target
speakers as causal or XQLQWHQWLRQDO impostors (pronouncing
their own PIN).
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In order to perform speaker verification tests over the available
data, a text-independent automatic speaker verification system,
based in Gaussian Mixture Model (GMM) approach, has been
employed. 8 Mel-frequency cepstral coefficients (MFCC) plus
8 ∆MFCC and 8 ∆∆MFCC, have been used as feature vectors
in all cases. Frames of 32 ms. taken every 16 ms., with
Hamming windowing and pre-emphasis factor of 0.97 are used
as input to the system.

Tests without normalization and with likelihood-domain (score)
normalization [1] have been accomplished. As the density at
point ; (input sequence) for all speakers other than the true
speaker, 6, is frequently dominated by the density for the
nearest reference speaker, nearest reference speaker
normalization criterion has been applied:
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where 6F means claimed speaker model. Another normalization
criterion has been used, corresponding to the so called
universal background model (UBM) normalization, that is:
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where 6F means claimed speaker model and 68 means universal
(generic) model. The design of the universal model, in the
sense of selecting appropriate training material, remains the
cornerstone of the whole procedure.

System performance will be provided as average Equal Error
Rate (EER) [7], for each case, because we would need too
much DET curves [8] to be included in this paper to report all
the experiments performed. No separate impostor population is
used, so non-target speakers are considered as impostors in
each case.
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GMMs are statistical models in which underlying temporal
structure of speech is lost. This property makes them suitable
for the text-independent speaker verification problem. Anyway,
if training and testing is accomplished using the same
phonetically-specific (short) utterance (PIN, password, passport
code, etc), the model will be speaker DQG phonetically specific,
hence tending to reject other non-specific utterances. A number
of experiments have been performed, and results are presented
subsequently.

•  ([SHULPHQW����0LFURSKRQH�VSHHFK

Experiment 1 establishes benchmark results, as same session,
same microphone speech is used in all cases. As stated
previously, there are two different training procedures,
generating 4 different models per speaker, namely: TR_STR,
models trained with 10 common (unspecific) digit strings, and
TR_1PIN, models trained with 1 repetitions of PIN, 1 varying
from 1 to 3. Tests are accomplished considering male and
female separate populations, and also using all of them
together. No kind of score normalization is used in this test.
Table 1 shows results of Experiment 1.

((5��� Gender TR_STR TR_1PIN TR_2PIN TR_3PIN
Male ���� ���� ���� ����

Female ���� ���� ���� ����TEST_A

All ���� ���� ���� ����
Male ���� ���� ���� ����

Female ���� ���� ���� ����TEST_B

All ���� ���� ���� ����

7DEOH��� Benchmark microphone speech results.

From Table 1, some conclusions can be derived: specific PIN
training (TR_1PIN) is more effective that generic digit string
training (TR_STR). With only 1 repetition of PIN code, results
are good enough. With 2 or 3 repetitions, less than 0.4% error
is observed. TEST_A (deliberate impostors) and TEST_B
(undeliberate impostors) show similar results.



•  ([SHULPHQWV���DQG����7HOHSKRQH�VSHHFK��PDWFKHG
FRQGLWLRQV

In Experiment 2, Handset 1 (‘TEIDE’ type) is used for training
and testing. Same tests as in Experiment 1. Nevertheless, in
this case nearest reference speaker normalization is also shown.
Results of Experiment 2 can be found in Table 2.

((5��� Gender TR_STR TR_1PIN TR_2PIN TR_3PIN
Male ��������� ��������� ��������� ���������

Female ��������� ��������� ��������� ���������TEST_A

All ��������� ��������� ��������� ���������
Male ���������� ��������� ��������� ���������

Female ���������� ��������� ��������� ���������TEST_B

All ���������� ��������� ��������� ���������

7DEOH��� Telephone speech, Handset 1, matching conditions.
EERs expressed without�with nearest reference speaker
normalization.

In Experiment 3, Handset 2 (‘FORMA’ type) is used for
training and testing. Same tests as in Experiment 2, including
nearest reference speaker normalization as in previous table.
Table 3 shows results of Experiment 3.

((5��� Gender TR_STR TR_1PIN TR_2PIN TR_3PIN
Male ��������� ��������� ��������� ���������

Female ��������� ��������� ��������� ���������TEST_A

All ��������� ��������� ��������� ���������
Male ���������� ��������� ��������� ���������

Female ���������� ��������� ��������� ���������TEST_B

All ���������� ��������� ��������� ���������

7DEOH��� Telephone speech, Handset 2, matching conditions.
EERs expressed without�with nearest reference speaker
normalization

Results found in Experiments 2 and 3, with telephone speech
and matching conditions, show how specific PIN training
(TR_1PIN) is much more effective that generic digit string
training (TR_STR). It is also remarkable the fact that testing
identical PINs (TEST_A, deliberate impostors) with generic
training concentrates only on speaker identity, whereas
different PINs (TEST_B, casual impostors) with generic digit
string training relies not only on identity but also on phonetic
similarity of testing contents, which always occurs with respect
to a non-specific phonetic model (TR_STR). It is also shown
how 2 PIN repetitions may suffice for obtaining good speaker
verification results. The use of score normalization has
improved results outstandingly.

•  ([SHULPHQW����7HOHSKRQH�VSHHFK��KDQGVHW�PLVPDWFK

In Experiment 4, telephone speech is used, and the effect of
training with one handset and testing with other different
handset is presented. Table 4 presents results in the form
CASE1/CASE2, where CASE1 means training with Handset 1
and testing with Handset 2, whereas CASE2 means the
opposite. Nearest reference speaker normalization is used in all
cases.

((5��� Gender TR_STR TR_1PIN TR_2PIN TR_3PIN
Male ��������� ��������� ��������� ���������

Female ��������� ��������� ��������� ���������TEST_A

All ��������� ��������� ��������� ���������
Male ��������� ��������� ��������� ���������

Female ��������� ��������� ��������� ���������TEST_B

All ��������� ��������� ��������� ���������

7DEOH��� Telephone speech, handset cross-mismatching
conditions. Score normalization applied in all cases.

The effect of channel mismatching worsens results with respect
to Experiments 2 and 3. Anyway, as it can be derived from
Table 4, score normalization techniques are also effective for
channel mismatching. It is remarkable that from 2 repetitions of
PIN for training (TR_2PIN), EER smaller (or much smaller)
than 0.7% are obtained.

•  ([S�����7HOHSKRQH�VSHHFK��KDQGVHW�PLVPDWFK��&01
DQG�8%0�1RUPDOL]DWLRQ

In this case, when training is accomplished with only Handset 2
information, we are presenting testing results when matching
conditions occur (Handset 2), and when mismatching
conditions (Handset 1) verify. For the score normalization
stage, nearest reference speaker method is still used, but it is
also compared with universal background model normalization.

Two different universal models are used. The first of them has
been obtained from GAUDI/AHUMADA speech database [4],
which is completely independent from TelPIN speech data. The
other model is derived directly from TelPIN data. Table 5
shows Experiment 5 results, comparing all these score
normalization methods and using in all cases CMN channel
compensation.

EER(%) TEST_- TRAIN NoNor Nearest Gaudi TelPin

TR_STR 4.7 0.1 0.6 1.3
TR_1PIN 1.5 0.0 0.1 0.3
TR_2PIN 0.6 0.0 0.1 0.0

A

TR_3PIN 0.4 0.0 0.0 0.0
TR_STR 17.7 0.1 2.8 3.0
TR_1PIN 3.2 0.1 0.3 0.4
TR_2PIN 0.8 0.3 0.0 0.1

Match

B

TR_3PIN 0.7 0.0 0.0 0.0
TR_STR 7.1 0.3 1.6 2.4
TR_1PIN 3.3 0.1 0.7 0.8
TR_2PIN 1.0 0.4 0.4 0.4

A

TR_3PIN 0.6 0.0 0.0 0.0
TR_STR 18.4 0.2 3.9 4.9
TR_1PIN 5.4 0.2 1.3 1.2
TR_2PIN 2.0 0.0 0.1 0.1

Mis-
match

B

TR_3PIN 0.8 0.0 0.1 0.0

7DEOH��� Verific. results with channel match and mismatch,
making use of CMN and several score normalization methods.

In a general manner, it can be said that, without score
normalization, CMN will slightly degrade results in matched
conditions, and will remarkably contribute to improve results in
mismatched conditions. When CMN is combined with nearest
reference speaker normalization method, results will improve
in all cases, producing in our case verification error rates under



0.3%. Considering all score normalization techniques proposed,
nearest reference speaker technique produces the best results.
But, as far as this technique in not very realistic in on-line real
systems, universal model normalization is an excellent
alternative. TelPIN (specific) universal background model,
produces very good results for specific PIN training
(TR_1PIN). Anyway, using external generic universal model
from GAUDI database, produces about the same results that
using TelPIN universal model, with the advantage that this data
can be used in any other generic situation regarding different
verification systems.

•  ([SHULPHQW����7HOHSKRQH�VSHHFK��KDQGVHW�FURVV�
PLVPDWFK��DOR�SKRQHWLF�XWWHUDQFHV

Experiment 6 is similar to Experiment 5 regarding training
stage, accomplished with Handset 2, score normalization
procedures and the use of CMN channel compensation scheme.
The difference between Experiment 5 and 6 stands on testing
tasks. For Experiment 6, two different testing tasks have been
developed, namely:

•  TEST_C: False rejection (FR) curves obtained with 2
repetitions of speaker PIN, but pronounced in a DOR�
SKRQHWLF way. False acceptance (FA) curves obtained with
2 PIN corresponding to LQWHQWLRQDO�LPSRVWRUV (same PIN as
target speaker).

•  TEST_D: FR curves obtained with 2 DOR�SKRQHWLF
utterances of speaker PIN. FA obtained using all non-target
speakers as XQGHOLEHUDWH�LPSRVWRUV (pronouncing their own
PIN).

EER(%) TEST_- TRAIN NoNor Nearest Gaudi TelPin

TR_STR 6.0 0.1 0.3 0.1
TR_1PIN 18.3 7.0 15.5 14.9
TR_2PIN 18.2 8.4 12.8 13.6

C

TR_3PIN 16.6 3.8 12.7 13.0
TR_STR 19.6 0.1 1.8 0.9
TR_1PIN 22.1 1.5 10.8 9.8
TR_2PIN 18.6 0.1 6.9 6.3

Match

D

TR_3PIN 16.8 0.0 6.1 5.0
TR_STR 8.3 0.0 0.9 0.2
TR_1PIN 21.0 9.1 16.3 11.0
TR_2PIN 18.4 10.0 17.5 10.8

C

TR_3PIN 18.6 6.3 13.1 10.8
TR_STR 20.5 0.1 2.5 1.3
TR_1PIN 23.9 4.0 13.4 11.1
TR_2PIN 21.9 0.4 8.8 7.6

Mis-
match

D

TR_3PIN 19.5 0.1 7.8 5.9

7DEOH��� Verification results with matched channels and
channel mismatch, making use of CMN and several score
normalization methods, for testing tasks TEST_C and
TEST_D.

This experiment demonstrates the high sensibility of text-
independent GMM models to the phonetic content of training
speech, specially when short utterances are used, as in the case
of PIN based verification. If phonetic content of short test
utterances (TEST_C and TEST_D) is different from that in
training utterances (TR_1PIN), results worsen, showing the
lack of phonetic consistency. In this case, a generic training

(TR_STR) works better, as being more general it is also more
adapted to phonetic variations.

��� 6800$5<

In this work, we have shown that uttered 4-digit PIN
information can be used for person identity verification through
the speaker voice. However, we have to take care with the
specificity of spanish pronunciation of PINs, which is usually
different for the same speaker in different utterances of the
same PIN. Then, as we have a very small amount of training
material, we can force the speaker to pronounce their PINs
isophonetically, where isophonetic PIN training has been
shown more effective than generic digit string training, or free
the speaker from any constraint in his pronunciation, using then
the phonetically-balanced digit-strings trained models. In this
way, phonetic consistency of PIN utterances determine a kind
of “text-dependency” (phonetically-specific) characteristic of
text-independent speaker modeling through GMMs. Further
work in this project include the evaluation with a multisession
telephone-speech PIN database, and the combination of the
verification system with the Telefonica state-of-the-art alo-
phonetic PIN recognition system in order to know ZKR says the
FRUUHFW PIN.
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